

Green Ports: Attaining Energy Efficiency in Forming Green Ports of the Future

THE ZERO EMISSION TERMINAL - HOW TO CONNECT TO THE GREEN FUTURE

VAHLE - YOUR SYSTEM SUPPLIER FOR INTELLIGENT ENERGY AND DATA TRANSMISSION, PORT EQUIPMENT ELECTRIFICATION, AND AUTOMATION SOLUTIONS

THE PORTS EVOLUTION, GREEN PORTS AND SMART PORT INDEX (SPI)

6th Generation

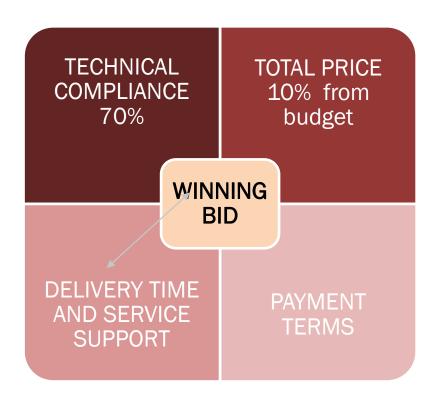
2030

AUTOMATION

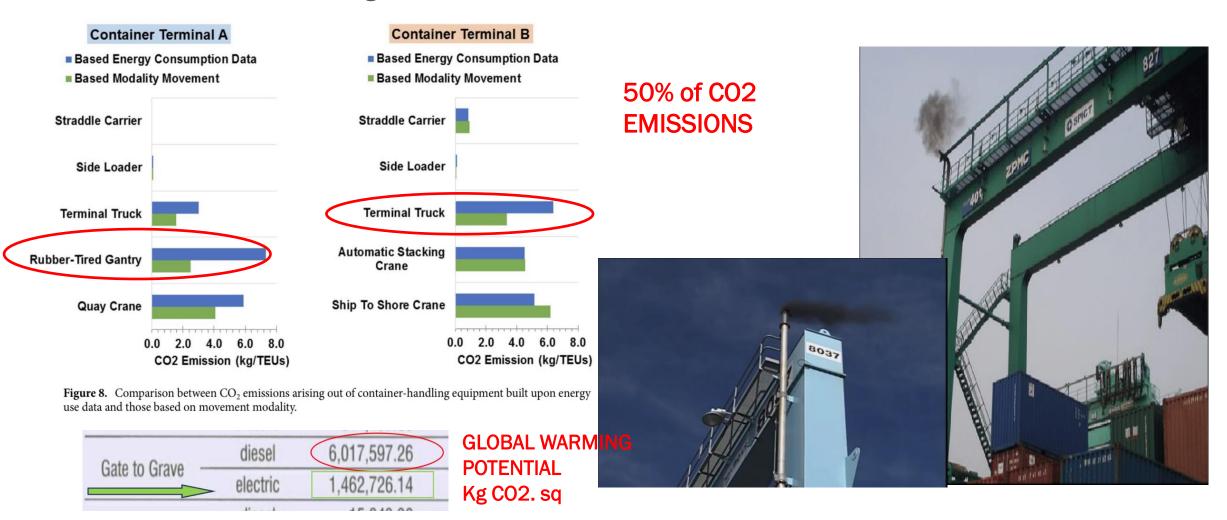
Table 1. UNCTAD Smart Port Model.

1 st Generation	2 nd Generation	3 rd Generation	4 th Generation	5 th Generation
1940	1960	1980	2000	2020
Mechanic Port Mechanical operation Handicraft works	Container Port Free Zone Industrial Area Free tax Port	EDI Port International Network Integrated Centre Commercial area EDI Services	Internet Port Global Network Port community Logistic Area Intermodal services Internet Services	Smart Port Multimodal Services Sustainable port Logistic Community Smart City

THE SUSTAINABLE PORT MANAGEMENT WITH A MULTIDIMENSIONAL APPROACH


The Implementation of the **SMART** and the **GREEN** Port Concept – a way of thinking: ENVIRONMENTAL, ECONOMIC, SOCIAL

TRADITIONAL EVALUATION METHOD


GREEN EVALUATION METHOD

PROPER SELECTION OF THE FIRST PROJECT - VITAL TO MAKE GREEN CONCEPT ALIVE

RTG is one of the world's largest machines on tires.

GREEN SOLUTIONS FOR RUBBER TYRED GANTRY CRANE ELECTRIFICATION SYSTEMS AND SOLUTIONS BY VAHLE – PORT TECHNOLOGY

ELECTRIFICATION OF **RTG** IS RECOMMENDED TO BE THE **FIRST** IMPLEMENTATION OF GREEN PORT CONCEPTS IN PORT OPERATION

SOLUTION 1:
eRTG SYSTEMS CONDUCTOR
RAIL – BUSBAR SOLUTION

SOLUTIONS 2:
ELECTRIC CONVERSION RTG
USING BATTERIES HYBRID OR
FULL ELECTRIC

SOLUTION 3: ELECTRIFICATION OF RTG BY CABLE REEL

SUCCESS STORY - PORT OF FELIXSTOWE - UNITED KINGDOM RTG ELECTRIFIED BY VAHLE BUSBAR SOLUTION

2015 - today

Total Savings since 2015: 89.620 tons CO²

Retrofit

66 ZPMC RTGs

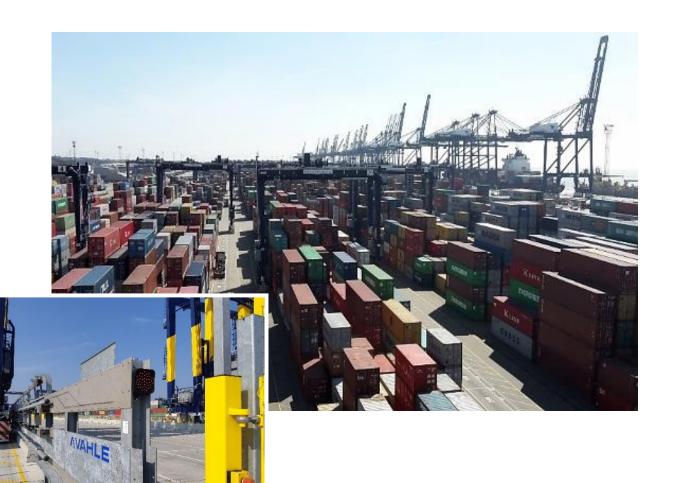
Greenfield

Berth 9: 8 new remote ZPMC

eRTGCs

17 new Konecranes eRTGCs

Retrofit


59 Blocks (15,322 m)

Greenfield

Berth 9: 8 container blocks

Automation with SMGX data communication and positioning

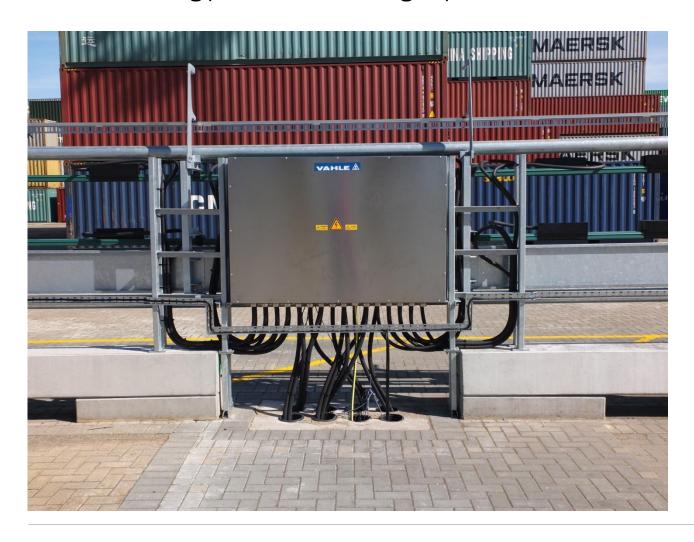
COMPARISON OF ELECTRIFICATION SOLUTIONS FOR RTG

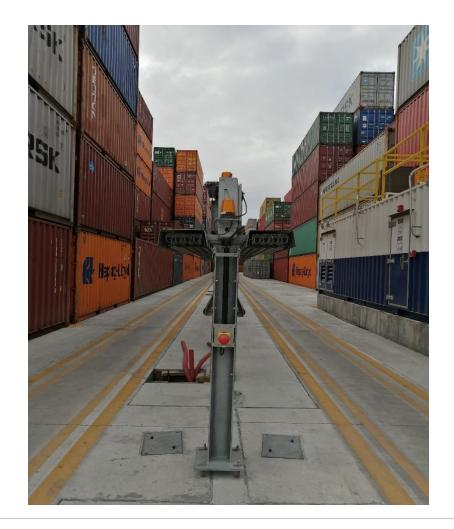
GREEN CRITERIA COMPLIANCE	SOLUTION 1 eRTG SYSTEMS CONDUCTOR RAIL BUSBAR SOLUTION	SOLUTIONS 2 ELECTRIC CONVERSION RTG USING BATTERIES HYBRID OR FULL ELECTRIC	SOLUTION 3 ELECTRIFICATION OF RTG BY CABLE REEL
EMISSIONS CO2	• ZERO	Hybrid 50%	• ZERO
BATTERY	only in block change - compact	Massive size	Massive Cable component
CIRCULARITY	 Aluminum structure, standard cables, easy to recycle locally. Circular and Sustainable 	Difficult to recycle in the local region – not standard and not sustainable. High radio activity	Easy to recycle
MAINTENACE COST REDUCTION	System maintenance free solution	30% maintenance reduction from diesel	High maintenance
TCO	 Long Life 20 yrs., Initial investment higher, TCO lowest 	Short Life 7 yrs. of batteries, expensive to replace TCO high	TCO high due to maintenance costs
AUTOMATION 4.0 ADAPTABILITY / DATA TRANSFER AND COMMUNICATION	 Adaptable. Phase 1: electrification Phase 2: Positioning Phase 3: data communication Phase 4: Automation 	Not proven	Not adaptable
ADDITIONAL WEIGHT ON RTG, CRANE MODIFICATION, OPERATIONAL PRACTICALITIES, AND MOVABILITY FLEXIBILITY	 Rail support structure, easy modification. No additional weight. Drive in variant and also plug in. High power grid 	 Additional weight of battery. No support structure Lower power grid 	 Cable alignment between RTG and container stack and additional cable protection to avoid damage. Significant additional weight and possibly mechanical modifications on the RTG. No major structural work. The need to unplug and plug in again to change aisles.

HOW THE SYSTEM WORKS: FIRST STEP – SOLUTION 1ERTG SOLUTION CONDUCTOR BUS

BAR - ZERO EMISSION AND CIRCULAR SYSTEM: Trimotion 4.0

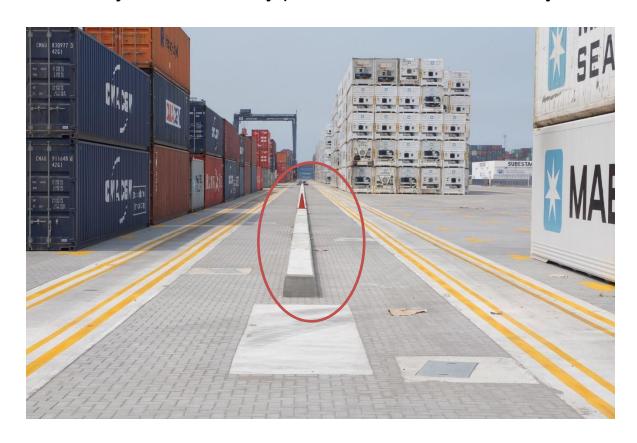
- Understand the block arrangement and workflow pattern of the RTG operation.
- ➤ Identify the number of Blocks, the length of each Block, and the Number of RTGs operating in one block.

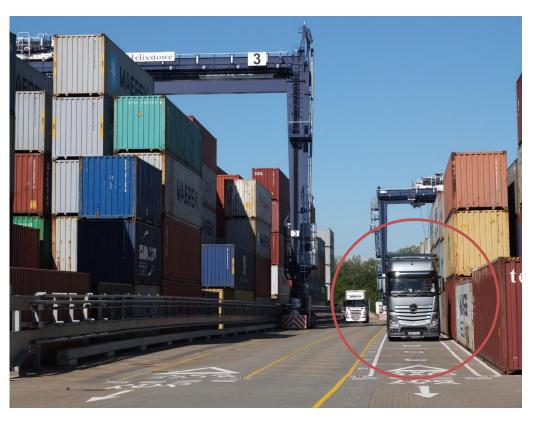



HOW THE SYSTEM WORKS: FIRST STEP - SOLUTION 1ERTG SOLUTION CONDUCTOR BUS

BAR - ZERO EMISSION AND CIRCULAR SYSTEM: Trimotion 4.0

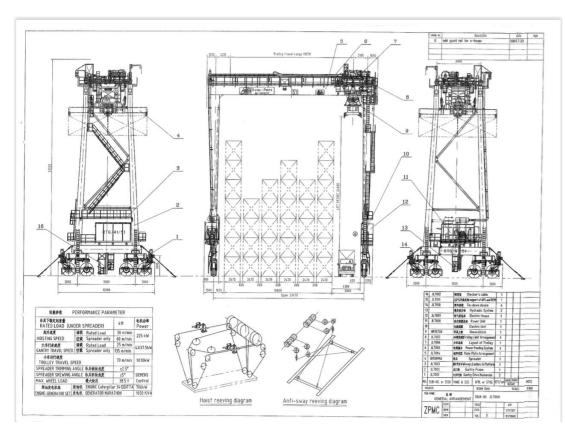
➤ Check feeding points and electric grid power connections.




HOW THE SYSTEM WORKS: FIRST STEP – SOLUTION 1ERTG SOLUTION CONDUCTOR BUS

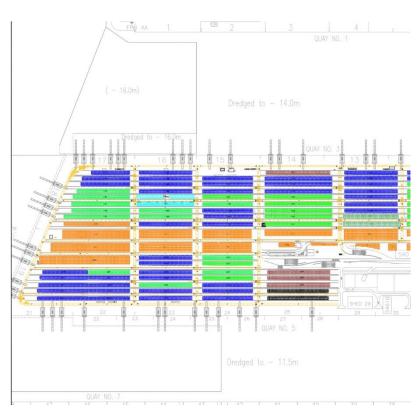
BAR - ZERO EMISSION AND CIRCULAR SYSTEM: Trimotion 4.0

➤ Identify RTG's Runway paths, truck lanes, and any obstacles.

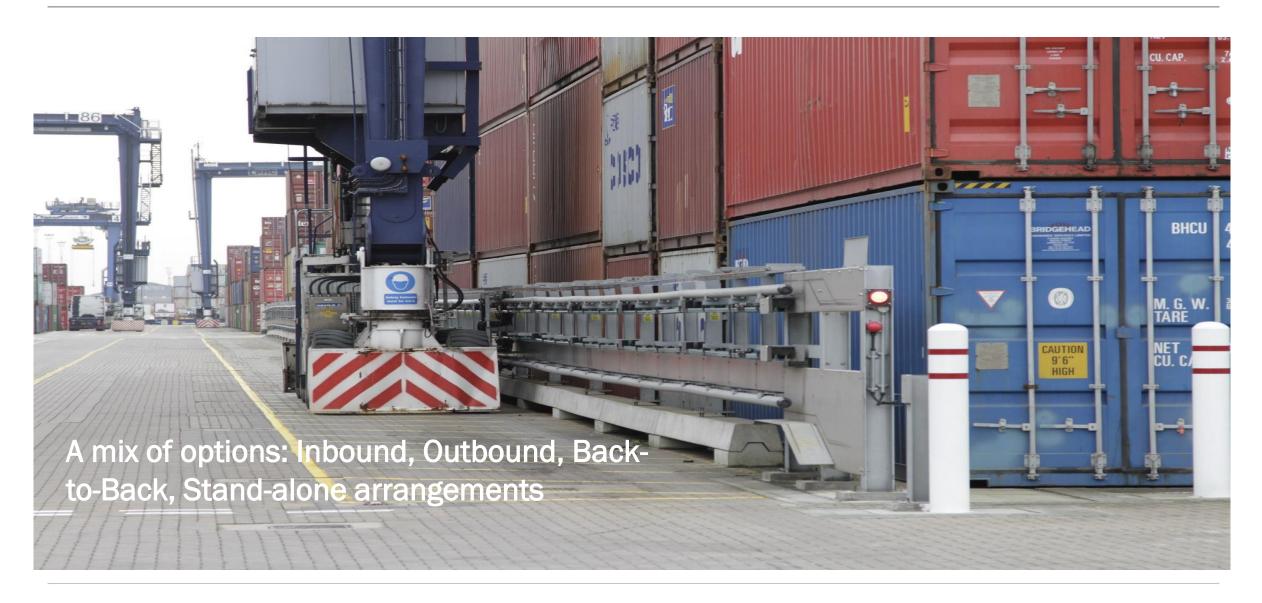


HOW THE SYSTEM WORKS: FIRST STEP - SOLUTION 1ERTG SOLUTION CONDUCTOR BUS

BAR - ZERO EMISSION AND CIRCULAR SYSTEM: Trimotion 4.0



> Study the electric diagram and wiring arrangement of the RTG type and genset location on the RTG.



HOW THE SYSTEM WORKS: FIRST STEP - SOLUTION 1ERTG SOLUTION CONDUCTOR BUS

BAR - ZERO EMISSION AND CIRCULAR SYSTEM: Trimotion 4.0

ERTG SOLUTION BY CONDUCTOR BUS BAR FROM VAHLE- ZERO EMISSION AND CIRCULAR SYSTEM: Trimotion 4.0

ELECTRIFICATION USING CONDUCTOR BUS BAR SOLUTION — ALUMINIUM STRUCTURE CARRIES CONDUCTOR BARS

CONDUCTOR BAR SOLUTION WITH A COLLECTOR TROLLEY AND ARM - AUTOMATICALLY ENGAGES AND DISENGAGES.

BRUSHES

TELESCOPIC ARM

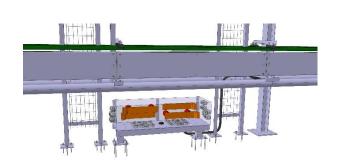
ERTG SOLUTION BY CONDUCTOR BUS BAR FROM VAHLE- ZERO EMISSION AND CIRCULAR

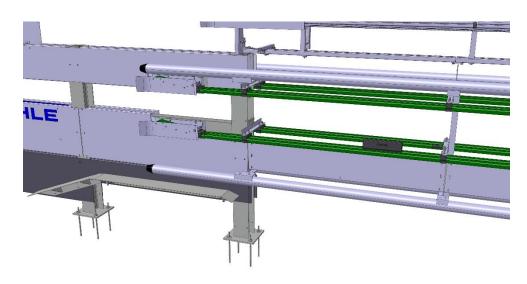
ELECTRIFICATION USING CONDUCTOR BUS BAR SOLUTION – DESIGN AND CONVERSION – Data and Electric Box

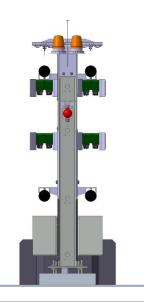
SYSTEM: Trimotion 4.0

ERTG SOLUTION BY CONDUCTOR BUS BAR FROM VAHLE- ZERO EMISSION AND CIRCULAR SYSTEM: Trimotion 4.0 VIDEO – SITE IMPLEMENTATION ENGAGING THE ARM

ERTG SOLUTION BY CONDUCTOR BUS BAR FROM VAHLE- ZERO EMISSION AND CIRCULAR SYSTEM: Trimotion 4.0 VIDEO – CONNECTION PROCEDURE






ELECTRIFICATION OF PORT EQUIPMENT - RTG ELECTRIFICATION USING BUSBAR

Increase Efficiency, Decarbonization Zero Emissions, Reduce TCO

Operator's benefits...

- ✓ Flexible yard operation
- ✓ Optimized OPEX by reducing fuel costs and idle time
- ✓ Reduction of CO2 and Noise Pollution
- ✓ Smart / Remote Maintenance
- ✓ Optimized Total Cost of Ownership reduction

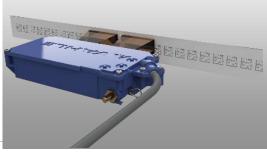
eRTG

Technical benefits

- ✓ Flexible yard operation
- ✓ Automatic connection system
- ✓ Autosteering
- √ Seamless synchronization
- ✓ Reduced GenSet maintenance cost

ERTG CONDUCTOR BUS BAR SOLUTION SYSTEM BENEFIT ELECTRIFICTAION TO AUTOMATION

ELECTRIFICATION FLEXIBLE


- Electrification by Conductor Rails
- Automated Power
 Connection for Block
 Change
- Automated, seamless switching

POSITIONING ACCURATE

- Absolute Positioning
 System independant
 from external influences
- Position accuracy up to ± 1 mm
- PN / PB / Ethernet
 Interfaces for Plug and
 Play Integration

DATA COMMUNICATION SAFE

- Highly shielded data communication
- Up to 600 Mbit/s gross rate
- Low latency time
- Interfaces ready for Automation - Ethernet, Profinet & Profinet Safe

CONTROL SYSTEMS SMART

- Autosteering
- Power measurement
- Remote Maintenance
- Energy optimization

VAHLE COMPETITIVE PRIORITY – FULL ELECTRIC SOLUTION – OPERATION OPTIMIZATION

Container Terminal Automation ERTG BUS BAR -SMGX

1.0 Electrification – Phase 1 Upgrade

Insulated conductor rails 1000V, 1000A with aluminum/ stainless steel

2.0 Positioning - Phase 2 Upgrade

Precise positioning feedback with a contactless reading head 3.0 Data Communication – Phase 3 – Upgrade

Interferencefree and safe data & video

✓ 2016 - 40 Mbps

✓ 2017 - 80 Mbps

2020-300 Mbps

2023-600 Mbps

Competitive Edge

4.0 Automation – Phase 4 Upgrade

Combination of electrification, positioning, and data communication for remote control,

Increase of energy resource **efficiency**

Savings through VAHLE eRTG since 2011

107,700,830,325

liters of diesel

920,606,093

kilograms of CO₂

About Paul VAHLE GmbH & Co. KG

Paul VAHLE GmbH & Co. KG is a system provider of mobile industrial applications. Since its founding in 1912, the company has delivered individualised energy and data positioning systems for diverse application areas worldwide. It focuses on the crane technology, intralogistics, port technology, automotive, people mover and amusement rides sectors. Among other things, the company is known for Paul Vahle's development of the first copper conductor bar in 1912.

Paul VAHLE GmbH & Co. KG is headquartered in Kamen, Germany, and is part of the VAHLE Group. The value-oriented family business thinks and acts sustainably and stands for quality, innovation and a solution-oriented approach. The Group generates revenue of over €120 million worldwide. Of the more than 750 employees, about 630 work at the German sites in Kamen and Dortmund as well as in twelve national sales offices. VAHLE is active in more than 50 countries worldwide, with twelve subsidiaries and representatives.

