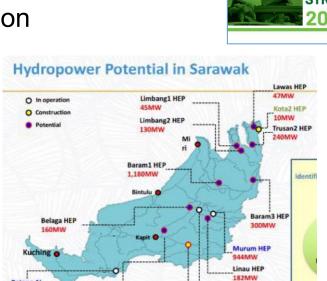


SESSION 3

Borneo Energy Transitions and Decarbonisation
Approach in Leading Towards a Green Economy Region

SESSION 3 – Borneo Energy Transitions and Decarbonisation Approach in Leading Towards a Green Economy Region

KEY FACTORS;

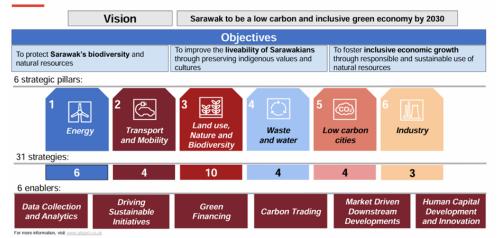

SARAWAK ENERGY

TRANSITION POLICY

(SET-P)

1. Sarawak's Net Zero Strategy and Carbon Plan

- Renewable Energy Plan
- Nature-based Solutions
- Carbon Market Readiness
- Policy Innovation

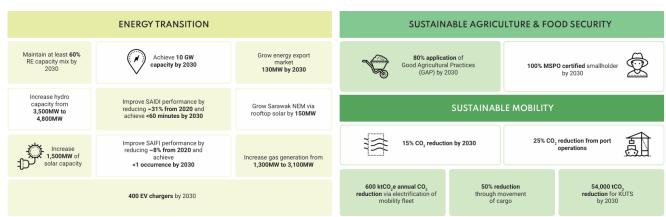


Sarawak's Green Economy Policy sets out the vision to achieve 3 policy objectives supported by 6 strategic pillars and 6 enablers

SESSION 3 – Borneo Energy Transitions and Decarbonisation Approach in Leading Towards a Green Economy Region

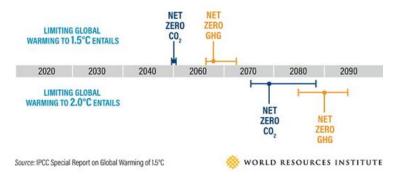
KEY FACTORS;

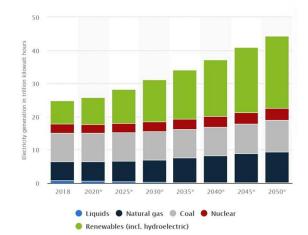
2. Regional Collaboration Across Borneo


- Cross-border Partnerships
- Creates Business Opportunities
- Accelerate the Energy Transition Landscape

Southeast Asia's Green Economy

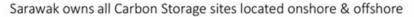
Sarawak 2030 Blueprint Key Targets

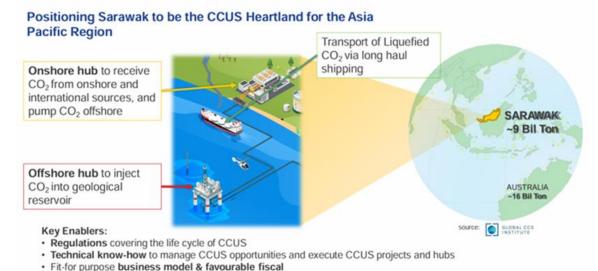

SESSION 3 – Borneo Energy Transitions and Decarbonisation Approach in Leading Towards a Green Economy Region


KEY FACTORS;

3. ASEAN Integration and Sarawak's Role

- Clean Energy Collaboration
- Digital Innovation for Smart Grids and Energy Efficiency
- Inclusive Transition
 Strategies to Benefit All
 Member States


Grid Emission Factor (GEF) in Malaysia


GEF is the generation weighted-average greenhouse gas (GHG) emission per unit of electricity generation of all generating power plants serving the electricity grid (GHG intensity of the grid electricity), including RE power plants that may generate Renewable Energy Certificate (REC).

	Grid Emission factor (Gg CO2e/GWh)					
Year	Peninsular	Sabah	Sarawak			
2022	0.774	0.525	0.199			
2021	0.757	0.524	0.198			
2020	0.821	0.503	0.203			
2019	0.753	0.548	0.222			
2018	0.797	0.500	0.193			
2017	0.767	0.530	0.213			

Sources

- 1. Grid Emission Factor for Peninsular and Sabah is calculated by the Energy Commission.
- Data for Sarawak's Grid Emission Factor is from Sarawak Energy Berhad (SEB) Annual and Sustainability Reports.

SESSION 3 – Borneo Energy Transitions and Decarbonisation Approach in Leading Towards a Green Economy Region

KEY FACTORS;

4. Main Driver Towards a Green Economy

- Hydropower Dominance
- Green Hydrogen Potential
- Sarawak Sustainable Blueprint

SECTOR AND KEY PRIORITIES			2030	2035	2040 and Beyond
Renewable Energy (RE)	Total power generation installed capacity (GW)		At least 10GW	At least 15GW	
	RE installed capacity (%)		60%	65–70%	
	Coal share of capacity mix (%)				0% (2045)
Natural Gas	Domestic gas utilisation share (%)		30%		
	Natural gas hubs (#)		4 (set up)	Continued expansion of the 4 gas hubs	
Energy Efficiency	Reduction of electricity intensity per capita in Residential & Commercial sectors vs. 2023 baseline (%)		2.5%	5–7.5%	7.5–10% (2040)
	Reduction of Industry sector energy intensity vs. 2023 baseline (%)		2–5%	7.5–10%	10–12.5% (2040)
Clean Hydrogen	Clean H ₂ production ¹ (MTPA)		0.1–0.2	1.0-1.3	2.0-2.5 (2050)
Low-carbon Mobility	Land	Public transport modal share (%)	20% (Kuching)	20% (Kuching) 20% (Bintulu)	
		Low carbon vehicle share of fleet for light transport (%)		35%	80% (2050)
		Low carbon fuel penetration for heavy transport (%)		20%	35% (2050)
	Marine	Low carbon fuel penetration in marine transport (%)		20%	40% (2050)
	Aviation	SAF blending mandate (%), based on international targets	1%	20%	47% (2050)
ccus	CO ₂ storage sites operationalised (#)		2–3	3-4	>4
	Annual CO₂ captured and stored/utilised (MMTCO₂e pa)		5–10	10–20	>20
Alternative Energy		production, in natural gas t (mmscfd)		10	30 (2040)

Includes blue and green hydrogen. Development of low-carbon hydrogen is subject to development of CCS (for blue), opportunity economics, off-taker agreements, and implementation of supporting policies.