

OPTIMIZING STS BACKREACH OPERATIONS

With Worker Protection

MI-JACK EUROPE – WHAT WE DO

REAL-TIME LOCATING SYSTEM (RTLS/PDS)

Redundant tracking system

Movements monitoring

 Localize and identify all personnel, machines, cranes and vehicles in the yard

MI-JACK EUROPE – WHAT WE DO

7

MINIMIZING RISK

- Anti-Collision Machine/Machine and Machine/Personnel
- CAS
 - no suspended loads
 - Different areas
 - Different functions

MAXIMIZING EFFICIENCY

- Simultaneous workflow between cranes and personnel
- Path optimization for cranes based on real-time yard traffic analysis
- Automation Level according to individual requirements

WITH WHOM DID WE WORK?

• NORTH AMERICA

- CSX Intermodal, Winter Haven, USA
- CSX Intermodal, Fairburn, USA
- CSX Intermodal, Rocky Mount, USA
- UP Railroad, Joliet, USA
- DP World, Vancouver, CAN
- LBCT, Long Beach, USA
- EUROPE
 - Eurogate, Hamburg, GER
 - Interporto, Padua, ITA

THE PROJECT

STS Backreach Operations Optimization – Proof of Concept at Eurogate Terminal, Hamburg

17.03.2025

THE CHALLENGE

THE CHALLENGE

What needs to be done to guarantee safe, simultaneous collaboration between humans and machines in the STS backreach?

WHAT DID WE WANT TO ACHIEVE?

1. Increasing Safety in the backreach of the STS crane

O

2. Determination of Positions of equipped persons and provide the option of activating warnings

3. Minimisation of work interruptions

4. Scalability

Extendable to other areas of the terminal in the future.

WHAT WAS THE CONCEPT?

- System recognizes position of object in the "safe" zone
- System gives feedback through filled, green zone
- Signal to Straddle carriers that they can pass

WHAT WAS THE CONCEPT?

- System recognises position of object in the "unsafe zone"
- System gives feedback by filling in the red zone
- Straddle carriers must stop

WHICH TECHNOLOGY DID WE USE?

Multilateration

ToF & TDoA

Sub 1 GHz

UWB (6,5 GHz)

1.0 Loop Begin: 🔰 23:46:47.625 📜 Loop End: 🔰 23:46:47.625

17.03.2025

WHAT WAS THE ANTENNA LAYOUT?

WHAT HAVE WE ACHIEVED?

Awareness of good processes and processes with room for enhancement by discussion and scope definition

Increasing the visibility of personnel in a very dangerous work environment - RTLS

Allow safe and simultaneous operation

It is possible that straddle carrier drivers know that there is a person in the dangerous area without seeing it

- Use of technology was proofed and can be extended
- Technology is scalable
- Acceptance of customer

WHAT TO CONSIDER WHEN AUTOMATING A TERMINAL?

How can automation take place? / What are your rules for automation?

How can technology in your terminal facilitate safer operations?

How do you measure the value of safety? What are the KPIs?

WHAT TO CONSIDER?

How can automation take place? / What are your rules for automation?

- ✓Think before act / write down, what you want to achieve
- ✓More detailed definition in the beginning Less surprises and expensive changes
- ✓ Define your processes / Activity-Frequency-Matrix

How can technology in your terminal facilitate safer operations?

- ✓Every technology has advantages and disadvantages
- ✓Match the technology with your goals
- ✓Avoid exceptions

How do you measure the value of safety? What are the KPIs?

- ✓Safety
- ✓Operational Availability

