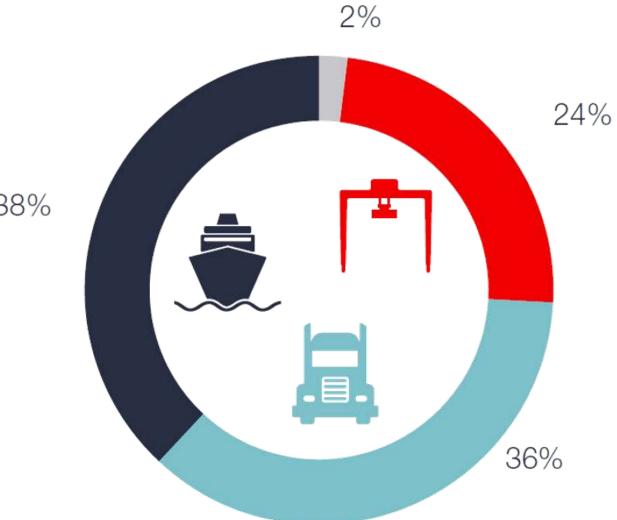
Towards eco-efficient cargo handling operations

Your Host Today

Rob van Klingeren Vice President India, Middle East & Africa

- ECT (Rotterdam), 10 years as Project Manager Automation
- Euromax (Rotterdam), 8 years as Project Director Equipment
- Kalmar Middle East (Dubai), 8 years as Managing Director Middle East & East Africa
- Kalmar Middle East (Dubai), 4 years as Vice President India, Middle East & Africa

Agenda


Why now

2 Towards eco-efficient operations step by step

- Eco-efficient vision and target
- Infrastructure strategy
- Eco-efficient cargo handling solutions
- Future operational scenarios and business case
- Implementation and operational optimisation
- 3 Summary

Emission distribution in container terminals

Ports are actively involved in efforts to cooperate on environmental protection and sustainable development

of ports have an environmental policy in place

96%

of ports have an environmental monitoring program

81%

91%

of ports communicate their environmental policy to stakeholders.

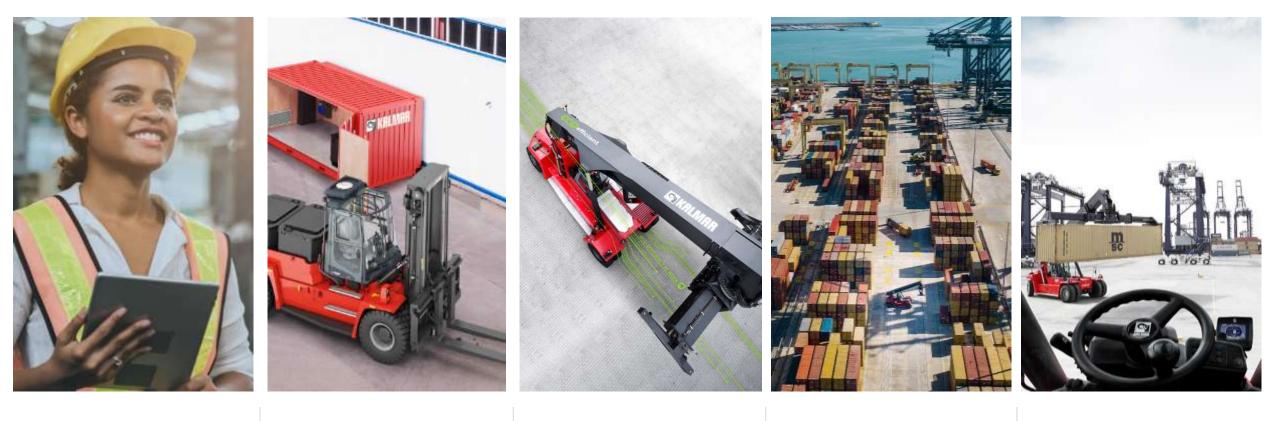
Source: The European Se Porte Organization (ESPO) Environmental Report 2020

Shipping currently represents 3-4% of global CO2 emissions and could reach 10% by 2050 if no action is taken.

Source: European Blue Economy 2020 report

Operators' biggest concerns regarding zero emission equipment

Will new zero emission equipment have technical failures in the beginning that will impact my productivity?


Will there be enough grid capacity and green electricity to charge batteries?

How much will battery powered equipment impact my operations if I need to charge several times per day? Very high investment to shift to both new equipment and new infrastructure

What will battery cost and residual value be? And with that - how can I ensure a good total cost of ownership?

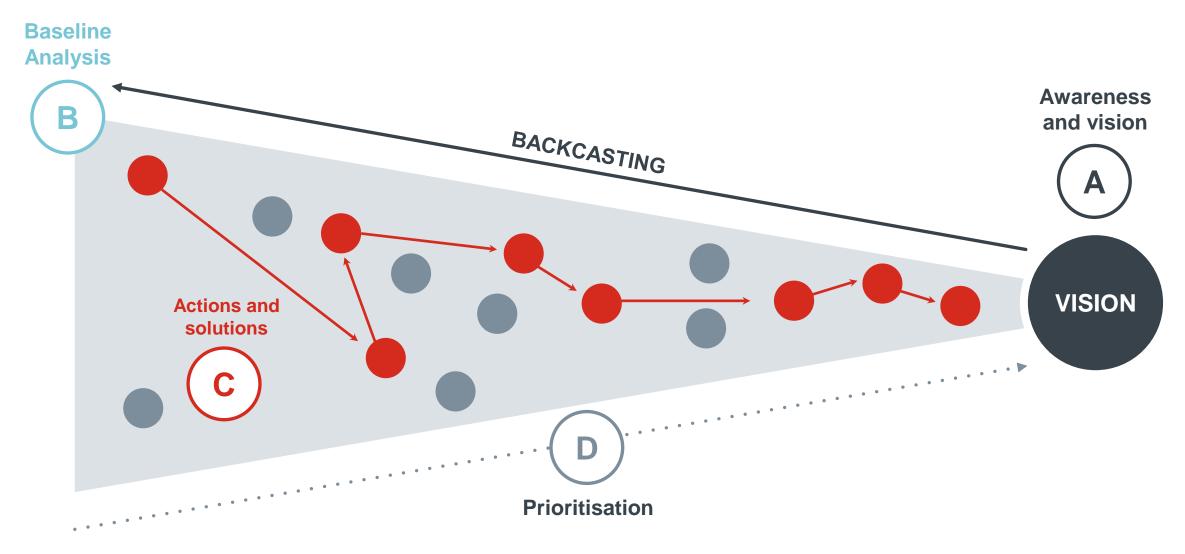
Source: Kalmar Market Study, September 2020

Eco-efficiency vision and targets

Infrastructure and charging strategy

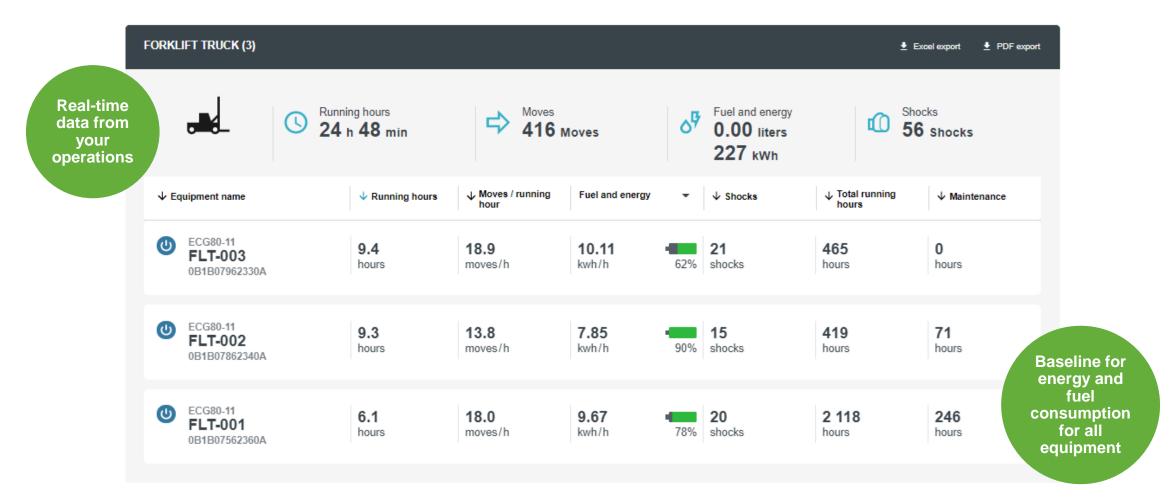
Eco-efficient equipment options

Operational scenarios and business case


Implementation and optimisation

Step 1: Defining eco-efficiency vision and target

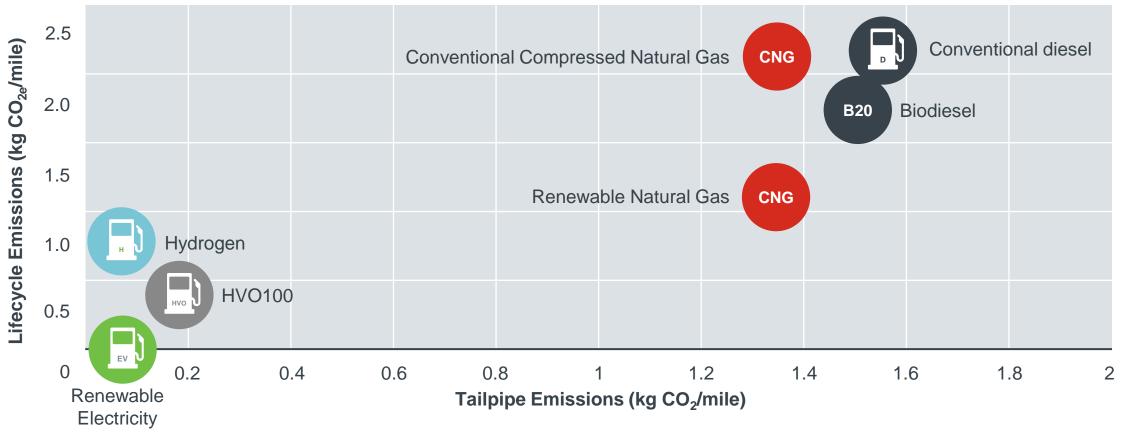
Creating a strategic roadmap for the future


What do I need to understand to create vision and target state?

Public and internal pressure Legislation

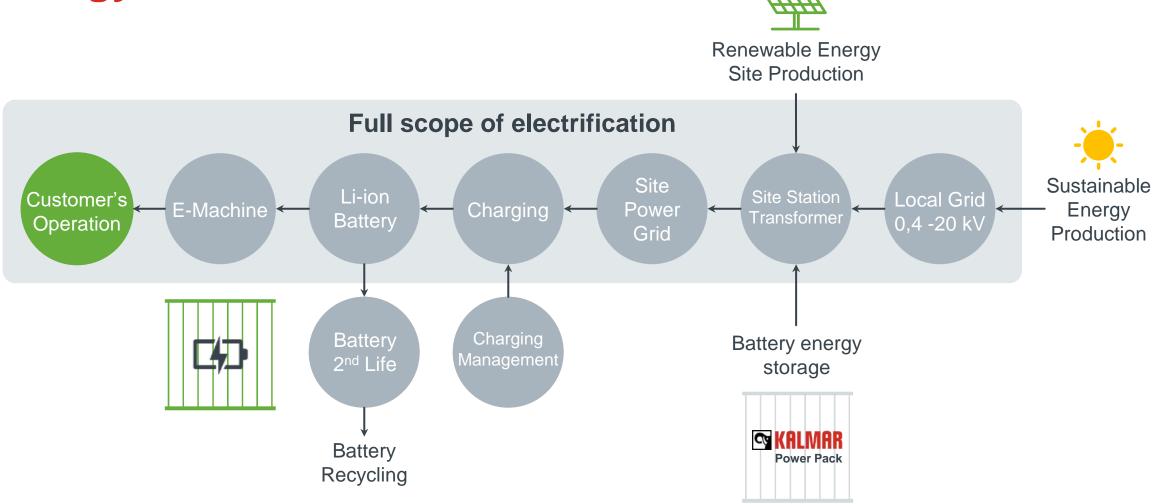
Customer interest

The current operations can be easily assessed based on real-time data



Step 2: Creating infrastructure strategy

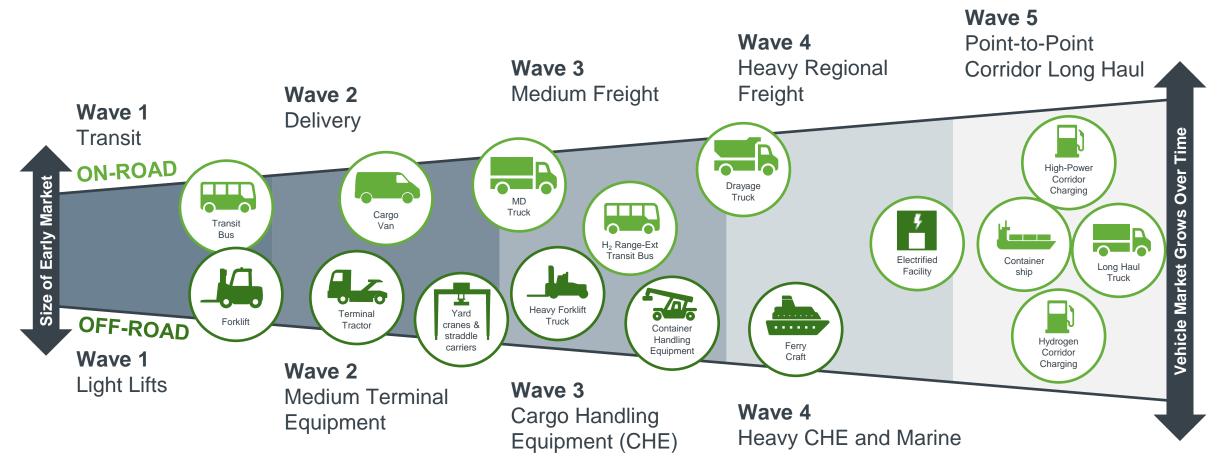
Fuels and power by lifecycle and consumption emissions


Alternative Fuels by Lifecycle and Tailpipe Emissions

🕾 KALMAR

https://www.breakthroughfuel.com/blog/overview-alternative-transportation-fuels/

Infrastructure example: A sustainable electric energy value chain



Step 3: Evaluating eco-efficient cargo handling solutions

Zero emission equipment progress

Market Progress Over Time

Similar drivetrain and component sizing can scale to early near applications Expanded supply chain capabilities and price reductions enable additional applications Steadily increasing volumes and infrastructure strengthen business case and performance confidence

Three eco-efficient powertrain options

Powertrain	Energy source	Things to consider		
Battery	Electricity	Battery size versus operational requirements Opportunity charging possibilities Charging management of fleet Availability of green electricity Battery lifetime and life cycle		
Fuel cell		Availability of green hydrogen		
Internal combustion	Hydrogen	Handling requirements Rebuilding of exiting combustion engines		
engine	Hydrotreated Vegetable Oil	Installation of new tank for HVO100		

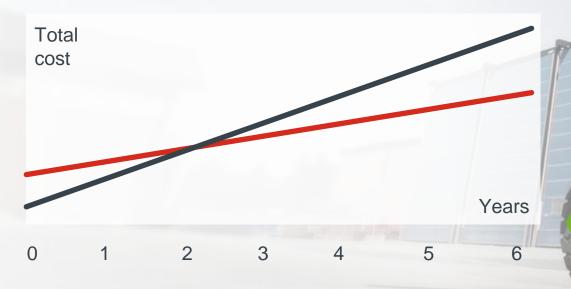
Operational impact for electric Reachstacker

Average drive cycle with Li-Ion battery and 300 kW charger

100% 90% 80% Battery capacity 70% 60% 50% 30 15 15 minute minute minute 40% coffee lunch coffee break break break 30% 20% 10% 0%-

Electric Empty Container Handler Electric Reachstacker Electric Heavy Forklift Next Generation Electric Terminal Tractor

2021: Kalmar will introduce a fully electric portfolio.



Step 4: Building future operational scenarios and business case

ROI should be based on TCO calculations

- Electric equipment will have less moving parts, longer maintenance cycles and thus cost 50% less to service and maintain
- Predictive fuel costs as electricity prices more stable than diesel fuel

Assumptions: 2500 h/year. 1.2 €/I, 8 ltrs consumption per hour. Electricity price 0,12 €/h with consumption of 17 kWh/h

Diesel versus electricity cost variances

Country	Diesel cost	Electricity cost	Cost factor	
Norway	1,48	0,04	35,56	
Denmark	1,36	0,05	25,11	
Sweden	1,55	0,06	24,17	
Finland	1,50	0,06	23,95	
Iceland	1,50	0,07	21,05	
Netherlands	1,38	0,07	20,34	
Portugal	1,35	0,08	17,04	
France	1,41	0,08	16,65	
Italy	1,42	0,09	16,61	
Germany	1,29	0,08	15,21	
Spain	1,18	0,08	14,99	
Hong Kong	1,75	0,12	14,50	
Poland	1,13	0,08	14,13	
Austria	1,17	0,09	13,31	
Canada	0,83	0,08	10,91	
reland	1,36	0,13	10,73	
Switzerland	1,44	0,14	10,12	
China	0,81	0,09	9,36	
Belgium	0,70	0,08	8,83	
UK	0,76	0,11	7,14	
USA	0,69	0,10	6,77	

Red diesel cost estimation Red diesel cost estimation

* Source: Eurostat https://ec.europa.eu/eurostat/databrowser/view/ten00117/default/table?lang=en) ** Source: https://www.globalpetrolprices.com/electricity_prices/

Step 5: Implementing and optimising your green investment

Driver training

- A mix of theory and hands-on experience courses
- Courses for Operators and Technicians
 - How to get best performance from the equipment.
 - How to improve driving efficiency
 - How to drive safer
- Can be held at Kalmar or customer site
- Flexible training formats

Optimising your fleet performance and value through proactive data-driven maintenance

	Running hours 24 h 48 min		Moves	Fuel and energe 0.00 liters 227 kWh		Shocks 56 shocks	Called	+ 500h maintenance	service	Scheduled 02.09.2020
↓ Equipment name	V Running hours	↓ Moves / running hour	Fuel and energy	▼ ↓ Shocks	↓ Total running hours	↓ Maintenance	SPARE PART Component 425803 1562	Description FILTER KITORG 100,500H	EVENTS Notification: 50007368	
ECG80-11 FLT-003 97962330A	9.4 hours	18.9 moves/h	10.11 kwh/h	21 62% shocks	465 hours	0 hours	Availability In slock, Estenated stragging	from Kalmar 16.18.3020	Called: 21 58 2020	
							Amount 1 PCS	Net price	Ordered: N/A	
ttery	9.3 hours	13.8 moves/h	7.85 kwh/h	• 15 90% shocks	419 hours	71 hours	Include labor?			Ordor
toring, rging ization	6.1 hours	18.0 moves/h	9.67 kwh/h	120 78% shocks	2 118 hours	246 hours			thinker Consist Ka	Order p direc from syste
4 DULING	3								100	Syste
JANUARY	j.	< 2020 →			Called Ordene	wannena				Syste
JANUARY • R5.002 5006 10.91.2028	× UL	LY		aust	SEPTEMBER	schedul			Record	Syste
JANUARY • R5.402 5006 10.91.2028	- Ju		a			schedul	ing		equipment	Syste
JANUARY	JU		1 1 1 1 1 1 1 1	aust 	SEPTEMBER	schedul and manager	ing			Syste
JANUARY • R5.402 5006 10.91.2028		U 1 1 1 1 1 1	1 1 1 1 12 1 16 10	aust 1 w 1 f 5 5 2 0 = 0 1 2	SEPTEMBER 	schedul and manager	ing		equipment	Syste

Summary and conclusions

Summary and conclusions

ALU 211127

tin B

dicw

Understand current state and issues. Set the target state. Make sure data is collected and shared. Analyse your options and the financial impact. Find opportunities for a step by step approach but having your long term goal in mind Take people onboard and start the implementation in a collaborative way.

Sustainability is today's opportunity but tomorrow's liability.

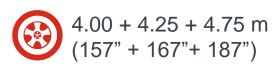
Thank you!

Rob.van.Klingeren@kalmarglobal.com

te his mode

Cy KALMAR

Electric Reachstacker ERG420-450 Available from 2021 Battery. Li-Ion (NMC) 4 different battery sizes 245 - 327 -407 - 587 kWh KALMAR CCOntrisient ----Capacities (max). Wheelbase. Ô 6,00 + 6,50 m (236" + 256") Models. S KALINI Toplift 6 Combi 2 45 33 18 10 tons 22 **SALMAR** klbs 99 73 40 33


Electric Forklift ECG180-330 Available from 2022 Q2

Batteries.

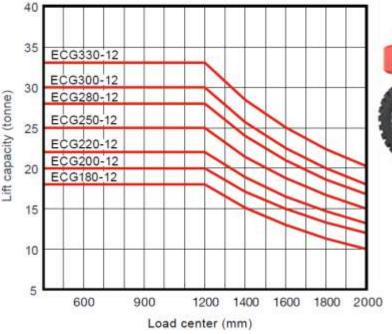
670V Li-Ion (NMC) 3 different battery sizes 163-245-392 kWh

Wheelbases.

Models.

Forklifts/Lift capacities

Lifting Equipment.

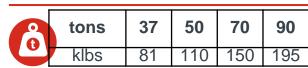


(Almar

Capacities (max).

Lifting capacity in tonnes

34


Ottawa Electric Terminal Tractor T2E+ Available from 2021

Battery.

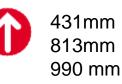
Li-Ion (NMC) 2 different battery sizes (152 - 182 kWh)

Capacities (GCW max).

Wheelbase.

126" 3200mm 136" 3450mm

Models.



* (including 1 DOT model for the USA)

Lifting height

